Health Professionals
Bursting with a sweet-tart flavor and vibrant red color, red raspberries are among the most widely enjoyed berries in the U.S.
While growing and nurturing this delicate fruit is a 12-month operation, the intense summer harvest season lasts only a few weeks. The best way to enjoy this summer sensation year-round is to head to the freezer aisle.
Health Benefits of Raspberries
A one-cup serving of frozen red raspberries has only 80 calories and provides 28% of the Recommended Dietary Allowance (RDA) of vitamin C, 21% fiber, 10% folate, and all with only 1 gram of fat and no cholesterol.
In addition to being high in antioxidants, red raspberries contain several phytonutrients (individual compounds from plants that are in fruits and vegetables). These include the polyphenols anthocyanins, flavan-3-ols, procyanidins, flavonols, ellagitannins, and hydroxycinnamates. [1] [2]
Research suggests that phytonutrients may help slow the aging process and may reduce the risk of certain diseases. A growing body of research is investigating how some phytonutrients may offer protection against some cancers, heart disease, stroke, high blood pressure, cataracts, osteoporosis and other chronic health conditions. [3] Research studies are showing emerging health benefits from nutrients specifically found in red raspberries. [4] [5] [6]
Health Research
There is abundant research about the health benefits of raspberries. We’ve compiled some of it for you below.
Allergen Sensitivity
- Marzban G, Herndl A, Kolarich D, Maghuly F, Mansfeld A, Hemmer W, Katinger H, Laimer M. Identification of four IgE-reactive proteins in raspberry (Rubus ideaeus L.). Mol Nutr Food Res. 2008 Dec;52(12):1497-506 http://www.ncbi.nlm.nih.gov/pubmed/18683824
Anti-Inflammatory/Oxidative Health
- Meyer AS, Heinonen M, Frankel EN, Antioxidant interactions of catechin, cyanidin, caffeic acid, quercetin, and ellagic acid on human LDL oxidation, Food Chemistry, Volume 61, Issues 1–2, 1998, Pages 71-75 https://doi.org/10.1016/S0308-8146(97)00100-3
- Kähkönen M, Kylli P, Ollilainen V, Salminen JP, Heinonen M. Antioxidantactivity of isolated ellagitannins from red raspberries and cloudberries. J Agric Food Chem. 2012 Feb 8;60(5):1167-74 http://www.ncbi.nlm.nih.gov/pubmed/22229937
- Festa F, Aglitti T, Duranti G, Ricordy R, Perticone P, Cozzi R. Strongantioxidant activity of ellagic acid in mammalian cells in vitro revealed by the comet assay. Anticancer Res. 2001 Nov-Dec;21(6A):3903-8 http://www.ncbi.nlm.nih.gov/pubmed/11911267
- Gauliard B, Grieve D, Wilson R, Crozier A, Jenkins C, Mullen WD, Lean M. The effects of dietary phenolic compounds on cytokine and antioxidant production by A549 cells. J Med Food. 2008 Jun;11(2):382-4 http://www.ncbi.nlm.nih.gov/pubmed/18598184
- Tsuda T. Regulation of adipocyte function by anthocyanins; possibility of preventing the metabolic syndrome. J Agric Food Chem. 2008 Feb 13;56(3):642-6 http://www.ncbi.nlm.nih.gov/pubmed/18211021
- Wang J, Mazza G. Effects of anthocyanins and other phenolic compounds on theproduction of tumor necrosis factor alpha in LPS/IFN-gamma-activated RAW 264.7 macrophages. J Agric Food Chem. 2002 Jul 17;50(15):4183-9 http://www.ncbi.nlm.nih.gov/pubmed/12105943
- Wang J, Mazza G. Inhibitory effects of anthocyanins and other phenoliccompounds on nitric oxide production in LPS/IFN-gamma-activated RAW 264.7 macrophages. J Agric Food Chem. 2002 Feb 13;50(4):850-7 http://www.ncbi.nlm.nih.gov/pubmed/11829656
- Godevac D, Tesević V, Vajs V, Milosavljević S, Stanković M. Antioxidantproperties of raspberry seed extracts on micronucleus distribution in peripheral blood lymphocytes. Food Chem Toxicol. 2009 Nov;47(11):2853-9 http://www.ncbi.nlm.nih.gov/pubmed/19748543
- Vuorela S, Kreander K, Karonen M, Nieminen R, Hämäläinen M, Galkin A, Laitinen L, Salminen JP, Moilanen E, Pihlaja K, Vuorela H, Vuorela P, Heinonen M. Preclinical evaluation of rapeseed, raspberry, and pine bark phenolics for health related effects. J Agric Food Chem. 2005 Jul 27;53(15):5922-31 http://www.ncbi.nlm.nih.gov/pubmed/16028975
- Jean-Gilles D, Li L, Ma H, Yuan T, Chichester CO 3rd, Seeram NP. Anti-inflammatory effects of polyphenolic-enriched red raspberry extract in an antigen-induced arthritis rat model. J Agric Food Chem. 2012 Jun13;60(23):5755-62 http://www.ncbi.nlm.nih.gov/pubmed/22111586
- Sangiovanni E, Vrhovsek U, Rossoni G, Colombo E, Brunelli C, Brembati L, Trivulzio S, Gasperotti M, Mattivi F, Bosisio E, Dell’Agli M. Ellagitannins from Rubus berries for the control of gastric inflammation: in vitro and in vivo studies. PLoS One. 2013 Aug 5;8(8):e71762 http://www.ncbi.nlm.nih.gov/pubmed/23940786
- Seeram NP, Momin RA, Nair MG, Bourquin LD. Cyclooxygenase inhibitory andantioxidant cyanidin glycosides in cherries and berries. Phytomedicine. 2001Sep;8(5):362-9 http://www.ncbi.nlm.nih.gov/pubmed/11695879
- Carmen Ramirez-Tortosa M, García-Alonso J, Luisa Vidal-Guevara M, Quiles JL, Jesús Periago M, Linde J, Dolores Mesa M, Ros G, Abellán P, Gil A. Oxidativestress status in an institutionalised elderly group after the intake of aphenolic-rich dessert. Br J Nutr. 2004 Jun;91(6):943-50 http://www.ncbi.nlm.nih.gov/pubmed/15182397
- Morillas-Ruiz J, Zafrilla P, Almar M, Cuevas MJ, López FJ, Abellán P, Villegas JA, González-Gallego J. The effects of an antioxidant-supplemented beverage on exercise-induced oxidative stress: results from a placebo-controlled double-blind study in cyclists. Eur J Appl Physiol. 2005 Dec;95(5-6):543-9 http://www.ncbi.nlm.nih.gov/pubmed/16132121
- Haleem MA, Barton KL, Borges G, Crozier A, Anderson AS. Increasing antioxidantintake from fruits and vegetables: practical strategies for the Scottish population. J Hum Nutr Diet. 2008 Dec;21(6):539-46 http://www.ncbi.nlm.nih.gov/pubmed/18759955
- Gião MS, Pestana D, Faria A, Guimarães JT, Pintado ME, Calhau C, Azevedo I, Malcata FX. Effects of extracts of selected medicinal plants upon hepaticoxidative stress. J Med Food. 2010 Feb;13(1):131-6 http://www.ncbi.nlm.nih.gov/pubmed/20136446
- Allen CT, Peden-Adams MM, EuDaly J, Keil DE. Subchronic exposure to ellagicacid impairs cytotoxic T-cell function and suppresses humoral immunity in mice. Immunopharmacol Immunotoxicol. 2003 Aug;25(3):409-22 http://www.ncbi.nlm.nih.gov/pubmed/19180803
- Iino T, Tashima K, Umeda M, Ogawa Y, Takeeda M, Takata K, Takeuchi K. Effect of ellagic acid on gastric damage induced in ischemic rat stomachs following ammonia or reperfusion. Life Sci. 2002 Jan 25;70(10):1139-50 http://www.ncbi.nlm.nih.gov/pubmed/11848298
- Ramirez-Tortosa C, Andersen ØM, Cabrita L, Gardner PT, Morrice PC, Wood SG, Duthie SJ, Collins AR, Duthie GG. Anthocyanin-rich extract decreases indices of lipid peroxidation and DNA damage in vitamin E-depleted rats. Free Radic Biol Med. 2001 Nov 1;31(9):1033-7 http://www.ncbi.nlm.nih.gov/pubmed/11677035
- Jakobsdottir G, Blanco N, Xu J, Ahrné S, Molin G, Sterner O, Nyman M. Formation of short-chain Fatty acids, excretion of anthocyanins, and microbial diversity in rats fed blackcurrants, blackberries, and raspberries. J Nutr Metab. 2013;2013:202534 http://www.ncbi.nlm.nih.gov/pubmed/23864942
- Rosillo MA, Sanchez-Hidalgo M, Cárdeno A, de la Lastra CA. Protective effectof ellagic acid, a natural polyphenolic compound, in a murine model of Crohn’s disease. Biochem Pharmacol. 2011 Oct 1;82(7):737-45 http://www.ncbi.nlm.nih.gov/pubmed/21763290
- Duthie SJ, Gardner PT, Morrice PC, Wood SG, Pirie L, Bestwick CC, Milne L, Duthie GG. DNA stability and lipid peroxidation in vitamin E-deficient rats in vivo and colon cells in vitro–modulation by the dietary anthocyanin,cyanidin-3-glycoside. Eur J Nutr. 2005 Jun;44(4):195-203 http://www.ncbi.nlm.nih.gov/pubmed/15309415
- Nasef NA, Mehta S, Murray P, Marlow G, Ferguson LR. Anti-inflammatory activity of fruit fractions in vitro, mediated through toll-like receptor 4 and 2 in the context of inflammatory bowel disease. Nutrients. 2014 Nov 19;6(11):5265-79 http://www.ncbi.nlm.nih.gov/pubmed/25415606
- Figueira ME, Câmara MB, Direito R, Rocha J, Serra AT, Duarte CM, Fernandes A, Freitas M, Fernandes E, Marques MC, Bronze MR, Sepodes B. Chemical characterization of a red raspberry fruit extract and evaluation of its pharmacological effects in experimental models of acute inflammation and collagen-induced arthritis. Food Funct. 2014 Dec;5(12):3241-51 http://www.ncbi.nlm.nih.gov/pubmed/25322288
- Li L, Wang L, Wu Z, Yao L, Wu Y, Huang L, Liu K, Zhou X, Gou D. Anthocyanin-rich fractions from red raspberries attenuate inflammation in both RAW264.7 macrophages and a mouse model of colitis. Sci Rep. 2014 Aug 29;4:6234 http://www.ncbi.nlm.nih.gov/pubmed/25167935
Anti-Microbial
- Chung JG. Inhibitory actions of ellagic acid on growth and arylamineN-acetyltransferase activity in strains of Helicobacter pylori from peptic ulcer patients. Microbios. 1998;93(375):115-27 http://www.ncbi.nlm.nih.gov/pubmed/9697340
- Rauha JP, Remes S, Heinonen M, Hopia A, Kähkönen M, Kujala T, Pihlaja K, Vuorela H, Vuorela P. Antimicrobial effects of Finnish plant extracts containing flavonoids and other phenolic compounds. Int J Food Microbiol. 2000 May 25;56(1):3-12 http://www.ncbi.nlm.nih.gov/pubmed/10857921
- Puupponen-Pimiä R, Nohynek L, Meier C, Kähkönen M, Heinonen M, Hopia A, Oksman-Caldentey KM. Antimicrobial properties of phenolic compounds from berries. J Appl Microbiol. 2001 Apr;90(4):494-507 http://www.ncbi.nlm.nih.gov/pubmed/11309059
- Chatterjee A, Yasmin T, Bagchi D, Stohs SJ. Inhibition of Helicobacter pylori in vitro by various berry extracts, with enhanced susceptibility toclarithromycin. Mol Cell Biochem. 2004 Oct;265(1-2):19-26 http://www.ncbi.nlm.nih.gov/pubmed/15543930
- Lin YT, Vattem D, Labbe RG, Shetty K. Enhancement of antioxidant activity and inhibition of Helicobacter pylori by phenolic phytochemical-enriched alcoholic beverages. Process Biochemistry. 2005 May;40(6):2059-65 https://doi.org/10.1016/j.procbio.2004.07.019
- Puupponen-Pimiä R, Nohynek L, Hartmann-Schmidlin S, Kähkönen M, Heinonen M, Määttä-Riihinen K, Oksman-Caldentey KM. Berry phenolics selectively inhibit the growth of intestinal pathogens. J Appl Microbiol. 2005;98(4):991-1000 http://www.ncbi.nlm.nih.gov/pubmed/15752346
- Nohynek LJ, Alakomi HL, Kähkönen MP, Heinonen M, Helander IM, Oksman-Caldentey KM, Puupponen-Pimiä RH. Berry phenolics: antimicrobial properties and mechanisms of action against severe human pathogens. Nutr Cancer. 2006;54(1):18-32 http://www.ncbi.nlm.nih.gov/pubmed/16800770
- Cavanagh HM, Hipwell M, Wilkinson JM. Antibacterial activity of berry fruits used for culinary purposes. J Med Food. 2003 Spring;6(1):57-61 http://www.ncbi.nlm.nih.gov/pubmed/12804021
- Ryan T, Wilkinson JM, Cavanagh HM. Antibacterial activity of raspberry cordial in vitro. Res Vet Sci. 2001 Dec;71(3):155-9 http://www.ncbi.nlm.nih.gov/pubmed/11798288
Anti-Oxidant Capacity
- Seeram NP, Nair MG. Inhibition of lipid peroxidation and structure-activity-related studies of the dietary constituents anthocyanins, anthocyanidins, and catechins. J Agric Food Chem. 2002 Sep 11;50(19):5308-12 http://www.ncbi.nlm.nih.gov/pubmed/12207466
- Wolfe KL, Kang X, He X, Dong M, Zhang Q, Liu RH. Cellular antioxidant activity of common fruits. J Agric Food Chem. 2008 Sep 24;56(18):8418-26 http://www.ncbi.nlm.nih.gov/pubmed/18759450
- Borges G, Degeneve A, Mullen W, Crozier A. Identification of flavonoid and phenolic antioxidants in black currants, blueberries, raspberries, red currants, and cranberries. J Agric Food Chem. 2010 Apr 14;58(7):3901-9 http://www.ncbi.nlm.nih.gov/pubmed/20000747
- Pellegrini N, Serafini M, Colombi B, Del Rio D, Salvatore S, Bianchi M, Brighenti F. Total antioxidant capacity of plant foods, beverages and oils consumed in Italy assessed by three different in vitro assays. J Nutr. 2003 Sep;133(9):2812-9 http://www.ncbi.nlm.nih.gov/pubmed/12949370
- Viljanen K, Halmos AL, Sinclair A, Heinonen M. Effect of blackberry and raspberry juice on whey protein emulsion stability. Eur Food Res Technol. 2005 OCT;221(5):602-9 https://doi.org/10.1007/s00217-005-0033-y
- Carlsen MH, Halvorsen BL, Holte K, Bøhn SK, Dragland S, Sampson L, Willey C, Senoo H, Umezono Y, Sanada C, Barikmo I, Berhe N, Willett WC, Phillips KM, Jacobs DR Jr, Blomhoff R. The total antioxidant content of more than 3100 foods, beverages, spices, herbs and supplements used worldwide. Nutr J. 2010 Jan 22;9:3 http://www.ncbi.nlm.nih.gov/pubmed/20096093
- Salminen H, Heinonen M. Plant phenolics affect oxidation of tryptophan. J Agric Food Chem. 2008 Aug 27;56(16):7472-81 http://www.ncbi.nlm.nih.gov/pubmed/18646765
- Wada L, Ou B. Antioxidant activity and phenolic content of Oregon caneberries. J Agric Food Chem. 2002 Jun 5;50(12):3495-500 http://www.ncbi.nlm.nih.gov/pubmed/12033817
- Kähkönen MP, Hopia AI, Heinonen M. Berry phenolics and their antioxidant activity. J Agric Food Chem. 2001 Aug;49(8):4076-82 http://www.ncbi.nlm.nih.gov/pubmed/11513713
- Deighton N, Stewart D, Davies HV, Gardner PT, Duthie GG, Mullen W, Crozier A. Soft fruit as sources of dietary antioxidants. Acta Hort. (ISHS) 2002, 585, 459-465. https://doi.org/10.17660/ActaHortic.2002.585.74
- Bermudez-Soto MJ, Tomas-Barberan FA. Evaluation of commercial red fruit juice concentrates as ingredients for antioxidant functional juices. Eur Food Res Technol. 2004 July;219(2):133-41 https://doi.org/10.1007/s00217-004-0940-3
- Viljanen K, Kylli P, Kivikari R, Heinonen M. Inhibition of protein and lipid oxidation in liposomes by berry phenolics. J Agric Food Chem. 2004 Dec 1;52(24):7419-24 http://www.ncbi.nlm.nih.gov/pubmed/15563229
- Viljanen K, Kylli P, Hubbermann EM, Schwarz K, Heinonen M. Anthocyanin antioxidant activity and partition behavior in whey protein emulsion. J Agric Food Chem. 2005 Mar 23;53(6):2022-7 http://www.ncbi.nlm.nih.gov/pubmed/15769130
- Pantelidis GE, Vasilakakis M, Manganaris GA, Diamantidis G. Antioxidant capacity, phenol, anthocyanin and ascorbic acid contents in raspberries, blackberries, red currants, gooseberries and Cornelian cherries. Food Chem. 2007;102(3)777–83 https://doi.org/10.1016/j.foodchem.2006.06.021
- Garzón GA, Riedl KM, Schwartz SJ. Determination of anthocyanins, totalphenolic content, and antioxidant activity in Andes Berry (Rubus glaucus Benth). J Food Sci. 2009 Apr;74(3):C227-32 http://www.ncbi.nlm.nih.gov/pubmed/19397707
- Henríquez C, López-Alarcón C, Gómez M, Lutz M, Speisky H. Time-dependence of ferric reducing antioxidant power (FRAP) index in Chilean apples and berries. Arch Latinoam Nutr. 2011 Sep;61(3):323-32 http://www.ncbi.nlm.nih.gov/pubmed/22696902
- Komorsky-Lovrić Š, Novak I. Abrasive stripping square-wave voltammetry of blackberry, raspberry, strawberry, pomegranate, and sweet and blue potatoes. J Food Sci. 2011 Aug;76(6):C916-20 http://www.ncbi.nlm.nih.gov/pubmed/22417490
- Chen L, Xin X, Yuan Q, Su D, Liu W. Phytochemical properties and antioxidant capacities of various colored berries. J Sci Food Agric. 2014 Jan 30;94(2):180-8 http://www.ncbi.nlm.nih.gov/pubmed/23653223
- Proteggente AR, Pannala AS, Paganga G, Van Buren L, Wagner E, Wiseman S, Van De Put F, Dacombe C, Rice-Evans CA. The antioxidant activity of regularly consumed fruit and vegetables reflects their phenolic and vitamin C composition. Free Radic Res. 2002 Feb;36(2):217-33 http://www.ncbi.nlm.nih.gov/pubmed/11999391
- Halvorsen BL, Carlsen MH, Phillips KM, Bøhn SK, Holte K, Jacobs DR Jr, Blomhoff R. Content of redox-active compounds (ie, antioxidants) in foods consumed in the United States. Am J Clin Nutr. 2006 Jul;84(1):95-135 http://www.ncbi.nlm.nih.gov/pubmed/16825686
- Amakura Y, Umino Y, Tsuji S, Tonogai Y. Influence of jam processing on the radical scavenging activity and phenolic content in berries. J Agric Food Chem. 2000 Dec;48(12):6292-7 http://www.ncbi.nlm.nih.gov/pubmed/11312801
- Wang SY, Lin HS. Antioxidant activity in fruits and leaves of blackberry, raspberry, and strawberry varies with cultivar and developmental stage. J Agric Food Chem. 2000 Feb;48(2):140-6 http://www.ncbi.nlm.nih.gov/pubmed/10691606
- Wu X, Beecher GR, Holden JM, Haytowitz DB, Gebhardt SE, Prior RL. Lipophilic and hydrophilic antioxidant capacities of common foods in the United States. J Agric Food Chem. 2004 Jun 16;52(12):4026-37 http://www.ncbi.nlm.nih.gov/pubmed/15186133
- Parry J, Su L, Luther M, Zhou K, Yurawecz MP, Whittaker P, Yu L. Fatty acid composition and antioxidant properties of cold-pressed marion berry, boysenberry, red raspberry, and blueberry seed oils. J Agric Food Chem. 2005 Feb 9;53(3):566-73 http://www.ncbi.nlm.nih.gov/pubmed/15686403
- Kalt W, Forney CF, Martin A, Prior RL. Antioxidant capacity, vitamin C, phenolics, and anthocyanins after fresh storage of small fruits. J Agric FoodChem. 1999 Nov;47(11):4638-44 http://www.ncbi.nlm.nih.gov/pubmed/10552863
- Nikitina VS, Shendel GV, Gerchikov AY, Efimenko NB. Flavonoids from raspberry and blackberry leaves and their antioxidant activities. Pharmaceutical Chemistry Journal. 2000 Nov;34(11):596-8. https://doi.org/10.1023/A:1010344221983
- Moyer RA, Hummer KE, Finn CE, Frei B, Wrolstad RE. Anthocyanins, phenolics, and antioxidant capacity in diverse small fruits: vaccinium, rubus, and ribes. J Agric Food Chem. 2002 Jan 30;50(3):519-25 http://www.ncbi.nlm.nih.gov/pubmed/11804523
- Funt RC. Antioxidants in Ohio berries. Acta Hort. (ISHS) 2003. https://doi.org/10.17660/ActaHortic.2003.626.6
- Sariburun E, Sahin S, Demir C, Türkben C, Uylaşer V. Phenolic content and antioxidant activity of raspberry and blackberry cultivars. J Food Sci. 2010May;75(4):C328-35 http://www.ncbi.nlm.nih.gov/pubmed/20546390
- Šaponjac VT, Gironés-Vilaplana A, Djilas S, Mena P, Cetković G, Moreno DA,Canadanović-Brunet J, Vulić J, Stajčić S, Krunić M. Anthocyanin profiles and biological properties of caneberry (Rubus spp.) press residues. J Sci Food Agric. 2014 Sep;94(12):2393-400 http://www.ncbi.nlm.nih.gov/pubmed/24407975
- Sablani SS, Andrews PK, Davies NM, Walters T, Saez H, Syamaladevi RM, Mohekar PR. Effect of thermal treatments on phytochemicals in conventionally and organically grown berries. J Sci Food Agric. 2010 Apr 15;90(5):769-78 http://www.ncbi.nlm.nih.gov/pubmed/20355111
- Verde SC, Trigo MJ, Sousa MB, Ferreira A, Ramos AC, Nunes I, Junqueira C, Melo R, Santos PM, Botelho ML. Effects of gamma radiation on raspberries: safety and quality issues. J Toxicol Environ Health A. 2013;76(4-5):291-303 http://www.ncbi.nlm.nih.gov/pubmed/23514071
- Mullen W, Stewart AJ, Lean ME, Gardner P, Duthie GG, Crozier A. Effect of freezing and storage on the phenolics, ellagitannins, flavonoids, and antioxidant capacity of red raspberries. J Agric Food Chem. 2002 Aug 28;50(18):5197-201 http://www.ncbi.nlm.nih.gov/pubmed/12188629
- Parry J, Su L, Moore J, Cheng Z, Luther M, Rao JN, Wang JY, Yu LL. Chemical compositions, antioxidant capacities, and antiproliferative activities of selected fruit seed flours. J Agric Food Chem. 2006 May 31;54(11):3773-8 http://www.ncbi.nlm.nih.gov/pubmed/16719495
- Chanjiraku K, Wang SY, Wang CY, Siriphanich J. Effect of natural volatile compounds on antioxidant capacity and antioxidant enzymes in raspberries. Postharvest Biology and Technology 2006, 40, (2), 106-115. https://doi.org/10.1016/j.postharvbio.2006.01.004
- Remberg SF, Sønsteby A, Aaby K, Heide OM. Influence of postflowering temperature on fruit size and chemical composition of Glen Ample raspberry (Rubusidaeus L.). J Agric Food Chem. 2010 Aug 25;58(16):9120-8 http://www.ncbi.nlm.nih.gov/pubmed/23654237
- Gülçin I, Topal F, Çakmakçı R, Bilsel M, Gören AC, Erdogan U. Pomological features, nutritional quality, polyphenol content analysis, and antioxidant properties of domesticated and 3 wild ecotype forms of raspberries (Rubus idaeus L.). J Food Sci. 2011 May;76(4):C585-93 http://www.ncbi.nlm.nih.gov/pubmed/22417339
- Scalzo J, Mezzetti B, Hall H, McGhie T. Comparing methods for evaluation of raspberry’s quality. Acta Hort. (ISHS) 2004 649, 327-330. https://doi.org/10.17660/ActaHortic.2004.649.63
- Novaković MM, Stevanović SM, Gorjanović SŽ, Jovanovic PM, Tešević VV, Janković MA, Sužnjević DŽ. Changes of hydrogen peroxide and radical-scavenging activity of raspberry during osmotic, convective, and freeze-drying. J Food Sci. 2011 May;76(4):C663-8 http://www.ncbi.nlm.nih.gov/pubmed/22417351
- de Ancos B, González EM, Cano MP. Ellagic acid, vitamin C, and total phenolic contents and radical scavenging capacity affected by freezing and frozen storage in raspberry fruit. J Agric Food Chem. 2000 Oct;48(10):4565-70 http://www.ncbi.nlm.nih.gov/pubmed/11052701
- Tosun M, Ercisli S, Karlidag H, Sengul M. Characterization of red raspberry (Rubus idaeus L.) genotypes for their physicochemical properties. J Food Sci. 2009 Sep;74(7):C575-9 http://www.ncbi.nlm.nih.gov/pubmed/19895463
- Dobson P, Graham J, Stewart D, Brennan R, Hackett CA, McDougall GJ.Over-seasons analysis of quantitative trait loci affecting phenolic content and antioxidant capacity in raspberry. J Agric Food Chem. 2012 May 30;60(21):5360-6 http://www.ncbi.nlm.nih.gov/pubmed/22583495
Bioavailability
- Laitinen LA, Tammela PS, Galkin A, Vuorela HJ, Marvola ML, Vuorela PM. Effects of extracts of commonly consumed food supplements and food fractions on the permeability of drugs across Caco-2 cell monolayers. Pharm Res. 2004 Oct;21(10):1904-16 http://www.ncbi.nlm.nih.gov/pubmed/15553239
- Gill CI, McDougall GJ, Glidewell S, Stewart D, Shen Q, Tuohy K, Dobbin A, BoydA, Brown E, Haldar S, Rowland IR. Profiling of phenols in human fecal water after raspberry supplementation. J Agric Food Chem. 2010 Oct 13;58(19):10389-95 http://www.ncbi.nlm.nih.gov/pubmed/20809621
- Cerdá B, Tomás-Barberán FA, Espín JC. Metabolism of antioxidant and chemopreventive ellagitannins from strawberries, raspberries, walnuts, and oak-aged wine in humans: identification of biomarkers and individual variability. J Agric Food Chem. 2005 Jan 26;53(2):227-35 http://www.ncbi.nlm.nih.gov/pubmed/15656654
- González-Barrio R, Borges G, Mullen W, Crozier A. Bioavailability of anthocyanins and ellagitannins following consumption of raspberries by healthy humans and subjects with an ileostomy. J Agric Food Chem. 2010 Apr14;58(7):3933-9 http://www.ncbi.nlm.nih.gov/pubmed/20218618
- González-Barrio R, Edwards CA, Crozier A. Colonic catabolism of ellagitannins, ellagic acid, and raspberry anthocyanins: in vivo and in vitro studies. Drug Metab Dispos. 2011 Sep;39(9):1680-8 http://www.ncbi.nlm.nih.gov/pubmed/21622625
- Cao G, Muccitelli HU, Sánchez-Moreno C, Prior RL. Anthocyanins are absorbed in glycated forms in elderly women: a pharmacokinetic study. Am J Clin Nutr. 2001 May;73(5):920-6 http://www.ncbi.nlm.nih.gov/pubmed/11333846
- Aura AM, Martin-Lopez P, O’Leary KA, Williamson G, Oksman-Caldentey KM, Poutanen K, Santos-Buelga C. In vitro metabolism of anthocyanins by human gut microflora. Eur J Nutr. 2005 Mar;44(3):133-42 http://www.ncbi.nlm.nih.gov/pubmed/15309431
- Talavéra S, Felgines C, Texier O, Besson C, Lamaison JL, Rémésy C. Anthocyanins are efficiently absorbed from the stomach in anesthetized rats. J Nutr. 2003 Dec;133(12):4178-82 http://www.ncbi.nlm.nih.gov/pubmed/14652368
- Woodward G, Kroon P, Cassidy A, Kay C. Anthocyanin stability and recovery: implications for the analysis of clinical and experimental samples. J Agric Food Chem. 2009 Jun 24;57(12):5271-8 http://www.ncbi.nlm.nih.gov/pubmed/19435353
- Daniel EM, Ratnayake S, Kinstle T, Stoner GD. The effects of pH and rat intestinal contents on the liberation of ellagic acid from purified and crude ellagitannins. J Nat Prod. 1991 Jul-Aug;54(4):946-52 http://www.ncbi.nlm.nih.gov/pubmed/1791480
- McDougall GJ, Dobson P, Smith P, Blake A, Stewart D. Assessing potential bioavailability of raspberry anthocyanins using an in vitro digestion system. J Agric Food Chem. 2005 Jul 27;53(15):5896-904 http://www.ncbi.nlm.nih.gov/pubmed/16028971
- Matuschek MC, Hendriks WH, McGhie TK, Reynolds GW. The jejunum is the main site of absorption for anthocyanins in mice. J Nutr Biochem. 2006 Jan;17(1):31-6 http://www.ncbi.nlm.nih.gov/pubmed/16098729
- Chen W, Wang D, Wang LS, Bei D, Wang J, See WA, Mallery SR, Stoner GD, Liu Z. Pharmacokinetics of protocatechuic acid in mouse and its quantification in human plasma using LC-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2012 Nov 1;908:39-44 http://www.ncbi.nlm.nih.gov/pubmed/23122399
- Borges G, Roowi S, Rouanet JM, Duthie GG, Lean ME, Crozier A. The bioavailability of raspberry anthocyanins and ellagitannins in rats. Mol Nutr Food Res. 2007 Jun;51(6):714-25 http://www.ncbi.nlm.nih.gov/pubmed/17533654
- Passamonti S, Vrhovsek U, Mattivi F. The interaction of anthocyanins with bilitranslocase. Biochem Biophys Res Commun. 2002 Aug 23;296(3):631-6 http://www.ncbi.nlm.nih.gov/pubmed/12176028
Cardiovascular
- Torres-Urrutia C, Guzmán L, Schmeda-Hirschmann G, Moore-Carrasco R, Alarcón M, Astudillo L, Gutierrez M, Carrasco G, Yuri JA, Aranda E, Palomo I. Antiplatelet, anticoagulant, and fibrinolytic activity in vitro of extracts from selected fruits and vegetables. Blood Coagul Fibrinolysis. 2011 Apr;22(3):197-205 http://www.ncbi.nlm.nih.gov/pubmed/21311321
- Yu YM, Wang ZH, Liu CH, Chen CS. Ellagic acid inhibits IL-1beta-induced cell adhesion molecule expression in human umbilical vein endothelial cells. Br J Nutr. 2007 Apr;97(4):692-8 http://www.ncbi.nlm.nih.gov/pubmed/17349082
- Chang WC, Yu YM, Chiang SY, Tseng CY. Ellagic acid suppresses oxidised low-density lipoprotein-induced aortic smooth muscle cell proliferation: studies on the activation of extracellular signal-regulated kinase 1/2 and proliferating cell nuclear antigen expression. Br J Nutr. 2008 Apr;99(4):709-14 http://www.ncbi.nlm.nih.gov/pubmed/18184451
- Labrecque L, Lamy S, Chapus A, Mihoubi S, Durocher Y, Cass B, Bojanowski MW, Gingras D, Béliveau R. Combined inhibition of PDGF and VEGF receptors by ellagic acid, a dietary-derived phenolic compound. Carcinogenesis. 2005 Apr;26(4):821-6 http://www.ncbi.nlm.nih.gov/pubmed/15661805
- Suh JH, Romain C, González-Barrio R, Cristol JP, Teissèdre PL, Crozier A, Rouanet JM. Raspberry juice consumption, oxidative stress and reduction of atherosclerosis risk factors in hypercholesterolemic golden Syrian hamsters. Food Funct. 2011 Jul;2(7):400-5 http://www.ncbi.nlm.nih.gov/pubmed/21894327
- Puupponen-Pimiä R, Seppänen-Laakso T, Kankainen M, Maukonen J, Törrönen R, Kolehmainen M, Leppänen T, Moilanen E, Nohynek L, Aura AM, Poutanen K, Tómas-Barberán FA, Espín JC, Oksman-Caldentey KM. Effects of ellagitannin-rich berries on blood lipids, gut microbiota, and urolithin production in human subjects with symptoms of metabolic syndrome. Mol Nutr Food Res. 2013 Dec;57(12):2258-63 http://www.ncbi.nlm.nih.gov/pubmed/23934737
- Freese R, Vaarala O, Turpeinen AM, Mutanen M. No difference in platelet activation or inflammation markers after diets rich or poor in vegetables, berries and apple in healthy subjects. Eur J Nutr. 2004 Jun;43(3):175-82 http://www.ncbi.nlm.nih.gov/pubmed/15168040
- Lin MC, Yin MC. Preventive effects of ellagic acid against doxorubicin-induced cardio-toxicity in mice. Cardiovasc Toxicol. 2013 Sep;13(3):185-93 http://www.ncbi.nlm.nih.gov/pubmed/23322372
- Chao PC, Hsu CC, Yin MC. Anti-inflammatory and anti-coagulatory activities of caffeic acid and ellagic acid in cardiac tissue of diabetic mice. Nutr Metab
(Lond). 2009 Aug 14;6:33 http://www.ncbi.nlm.nih.gov/pubmed/19678956 - Mullen W, McGinn J, Lean ME, MacLean MR, Gardner P, Duthie GG, Yokota T, Crozier A. Ellagitannins, flavonoids, and other phenolics in red raspberries and their contribution to antioxidant capacity and vasorelaxation properties. J Agric Food Chem. 2002 Aug 28;50(18):5191-6 http://www.ncbi.nlm.nih.gov/pubmed/12188628
- Yu YM, Chang WC, Wu CH, Chiang SY. Reduction of oxidative stress and apoptosis in hyperlipidemic rabbits by ellagic acid. J Nutr Biochem. 2005 Nov;16(11):675-81 http://www.ncbi.nlm.nih.gov/pubmed/16081267
- Pieszka M, Tombarkiewicz B, Roman A, Migdał W, Niedziółka J. Effect of bioactive substances found in rapeseed, raspberry and strawberry seed oils on blood lipid profile and selected parameters of oxidative status in rats. Environ Toxicol Pharmacol. 2013 Nov;36(3):1055-62 http://www.ncbi.nlm.nih.gov/pubmed/24121557
- Panchal SK, Ward L, Brown L. Ellagic acid attenuates high-carbohydrate, high-fat diet-induced metabolic syndrome in rats. Eur J Nutr. 2013Mar;52(2):559-68 http://www.ncbi.nlm.nih.gov/pubmed/22538930
- Jia H, Liu JW, Ufur H, He GS, Liqian H, Chen P. The antihypertensive effect of ethyl acetate extract from red raspberry fruit in hypertensive rats. Pharmacogn Mag. 2011 Jan;7(25):19-24 http://www.ncbi.nlm.nih.gov/pubmed/21472074
- Rani UP, Kesavan R, Ganugula R, Avaneesh T, Kumar UP, Reddy GB, Dixit M. Ellagic acid inhibits PDGF-BB-induced vascular smooth muscle cell proliferation and prevents atheroma formation in streptozotocin-induced diabetic rats. J Nutr Biochem. 2013 Nov;24(11):1830-9 http://www.ncbi.nlm.nih.gov/pubmed/23866995
- Olgar Y, Ozturk N, Usta C, Puddu PE, Ozdemir S. Ellagic acid reduces L-typeCa2+ current and contractility through modulation of NO-GC-cGMP pathways in rat ventricular myocytes. J Cardiovasc Pharmacol. 2014 Dec;64(6):567-73 http://www.ncbi.nlm.nih.gov/pubmed/25165997
- Ding Y, Zhang B, Zhou K, Chen M, Wang M, Jia Y, Song Y, Li Y, Wen A. Dietary ellagic acid improves oxidant-induced endothelial dysfunction and atherosclerosis: role of Nrf2 activation. Int J Cardiol. 2014 Aug20;175(3):508-14 http://www.ncbi.nlm.nih.gov/pubmed/25017906
Diabetes
- Jayaprakasam B, Vareed SK, Olson LK, Nair MG. Insulin secretion by bioactive anthocyanins and anthocyanidins present in fruits. J Agric Food Chem. 2005 Jan 12;53(1):28-31 http://www.ncbi.nlm.nih.gov/pubmed/15631504
- Tsuda T. Regulation of adipocyte function by anthocyanins; possibility of preventing the metabolic syndrome. J Agric Food Chem. 2008 Feb 13;56(3):642-6 http://www.ncbi.nlm.nih.gov/pubmed/18211021
- Mathew AJ, Raj NN, Sugappriya M, Priyadarshini SM. Modeling of ATP-sensitive inward rectifier potassium channel 11 and inhibition mechanism of the natural ligand, ellagic acid, using molecular docking. Adv Exp Med Biol. 2010;680:489-95 http://www.ncbi.nlm.nih.gov/pubmed/20865534
- McDougall GJ, Shpiro F, Dobson P, Smith P, Blake A, Stewart D. Different polyphenolic components of soft fruits inhibit alpha-amylase andalpha-glucosidase. J Agric Food Chem. 2005 Apr 6;53(7):2760-6 http://www.ncbi.nlm.nih.gov/pubmed/15796622
- Grussu D, Stewart D, McDougall GJ. Berry polyphenols inhibit α-amylase in vitro: identifying active components in rowanberry and raspberry. J Agric Food Chem. 2011 Mar 23;59(6):2324-31 http://www.ncbi.nlm.nih.gov/pubmed/21329358
- Clegg ME, Pratt M, Meade CM, Henry CJ. The addition of raspberries and blueberries to a starch-based food does not alter the glycaemic response. Br J Nutr. 2011 Aug;106(3):335-8 http://www.ncbi.nlm.nih.gov/pubmed/21736828
- Törrönen R, Kolehmainen M, Sarkkinen E, Poutanen K, Mykkänen H, Niskanen L. Berries reduce postprandial insulin responses to wheat and rye breads in healthy women. J Nutr. 2013 Apr;143(4):430-6 http://www.ncbi.nlm.nih.gov/pubmed/23365108
- Chao PC, Hsu CC, Yin MC. Anti-inflammatory and anti-coagulatory activities of caffeic acid and ellagic acid in cardiac tissue of diabetic mice. Nutr Metab(Lond). 2009 Aug 14;6:33 http://www.ncbi.nlm.nih.gov/pubmed/19678956
- Chao CY, Mong MC, Chan KC, Yin MC. Anti-glycative and anti-inflammatory effects of caffeic acid and ellagic acid in kidney of diabetic mice. Mol Nutr Food Res. 2010 Mar;54(3):388-95 http://www.ncbi.nlm.nih.gov/pubmed/19885845
- Goto T, Teraminami A, Lee JY, Ohyama K, Funakoshi K, Kim YI, Hirai S, UemuraT, Yu R, Takahashi N, Kawada T. Tiliroside, a glycosidic flavonoid, ameliorates obesity-induced metabolic disorders via activation of adiponectin signaling followed by enhancement of fatty acid oxidation in liver and skeletal muscle in obese-diabetic mice. J Nutr Biochem. 2012 Jul;23(7):768-76 http://www.ncbi.nlm.nih.gov/pubmed/21889885
- Tsuda T, Ueno Y, Yoshikawa T, Kojo H, Osawa T. Microarray profiling of geneexpression in human adipocytes in response to anthocyanins. Biochem Pharmacol. 2006 Apr 14;71(8):1184-97 http://www.ncbi.nlm.nih.gov/pubmed/16483547
- Tsuda T, Ueno Y, Kojo H, Yoshikawa T, Osawa T. Gene expression profile of isolated rat adipocytes treated with anthocyanins. Biochim Biophys Acta. 2005 Apr 15;1733(2-3):137-47 http://www.ncbi.nlm.nih.gov/pubmed/15863361
- Panchal SK, Ward L, Brown L. Ellagic acid attenuates high-carbohydrate, high-fat diet-induced metabolic syndrome in rats. Eur J Nutr. 2013 Mar;52(2):559-68 http://www.ncbi.nlm.nih.gov/pubmed/22538930
- Tsuda T, Ueno Y, Aoki H, Koda T, Horio F, Takahashi N, Kawada T, Osawa T. Anthocyanin enhances adipocytokine secretion and adipocyte-specific gene expression in isolated rat adipocytes. Biochem Biophys Res Commun. 2004 Mar 26;316(1):149-57 http://www.ncbi.nlm.nih.gov/pubmed/15003523
- Sasaki R, Nishimura N, Hoshino H, Isa Y, Kadowaki M, Ichi T, Tanaka A,Nishiumi S, Fukuda I, Ashida H, Horio F, Tsuda T. Cyanidin 3-glucoside ameliorates hyperglycemia and insulin sensitivity due to down regulation of retinol binding protein 4 expression in diabetic mice. Biochem Pharmacol. 2007 Dec 3;74(11):1619-27 http://www.ncbi.nlm.nih.gov/pubmed/17869225
- Guo H, Xia M, Zou T, Ling W, Zhong R, Zhang W. Cyanidin 3-glucoside attenuates obesity-associated insulin resistance and hepatic steatosis in high-fat diet-fed and db/db mice via the transcription factor FoxO1. J Nutr Biochem. 2012 Apr;23(4):349-60 http://www.ncbi.nlm.nih.gov/pubmed/21543211
- Ahad A, Ganai AA, Mujeeb M, Siddiqui WA. Ellagic acid, an NF-κB inhibitor, ameliorates renal function in experimental diabetic nephropathy. Chem Biol Interact. 2014 Aug 5;219:64-75 http://www.ncbi.nlm.nih.gov/pubmed/24877639
- Rani UP, Kesavan R, Ganugula R, Avaneesh T, Kumar UP, Reddy GB, Dixit M.Ellagic acid inhibits PDGF-BB-induced vascular smooth muscle cell proliferation and prevents atheroma formation in streptozotocin-induced diabetic rats. J Nutr Biochem. 2013 Nov;24(11):1830-9 http://www.ncbi.nlm.nih.gov/pubmed/23866995
Food Chemistry
- Seeram NP, Nair MG. Inhibition of lipid peroxidation and structure-activity-related studies of the dietary constituents anthocyanins, anthocyanidins, and catechins. J Agric Food Chem. 2002 Sep 11;50(19):5308-12. http://www.ncbi.nlm.nih.gov/pubmed/12207466
- de la Peña Moreno F, Blanch GP, Ruiz del Castillo ML. (+)-methyl jasmonate-induced bioformation of myricetin, quercetin and kaempferol in red raspberries. J Agric Food Chem. 2010 Nov 24;58(22):11639-44 http://www.ncbi.nlm.nih.gov/pubmed/21043497
- Mullen W, Yokota T, Lean ME, Crozier A. Analysis of ellagitannins and conjugates of ellagic acid and quercetin in raspberry fruits by LC-MSn.Phytochemistry. 2003 Sep;64(2):617-24 http://www.ncbi.nlm.nih.gov/pubmed/12943785
- Borges G, Degeneve A, Mullen W, Crozier A. Identification of flavonoid and phenolic antioxidants in black currants, blueberries, raspberries, red currants, and cranberries. J Agric Food Chem. 2010 Apr 14;58(7):3901-9 http://www.ncbi.nlm.nih.gov/pubmed/20000747
- Mullen W, Lean ME, Crozier A. Rapid characterization of anthocyanins in red raspberry fruit by high-performance liquid chromatography coupled to single quadrupole mass spectrometry. J Chromatogr A. 2002 Aug 9;966(1-2):63-70 http://www.ncbi.nlm.nih.gov/pubmed/12214705
- Boyles MJ, Wrolstad RE. Anthocyanin composition of red raspberry juice: Influences of cultivar, processing, and environmental factors. Journal of Food Science (1993), 58: 1135–1141. http://dx.doi.org/10.1111/j.1365-2621.1993.tb06132.x
- Wu X, Prior RL. Systematic identification and characterization of anthocyaninsby HPLC-ESI-MS/MS in common foods in the United States: fruits and berries. J Agric Food Chem. 2005 Apr 6;53(7):2589-99 http://www.ncbi.nlm.nih.gov/pubmed/15796599
- Wada L, Ou B. Antioxidant activity and phenolic content of Oregon caneberries. J Agric Food Chem. 2002 Jun 5;50(12):3495-500 http://www.ncbi.nlm.nih.gov/pubmed/12033817
- Häkkinen SH, Kärenlampi SO, Heinonen IM, Mykkänen HM, Törrönen AR. Content of the flavonols quercetin, myricetin, and kaempferol in 25 edible berries. J Agric Food Chem. 1999 Jun;47(6):2274-9 http://www.ncbi.nlm.nih.gov/pubmed/10794622
- Kähkönen MP, Hopia AI, Heinonen M. Berry phenolics and their antioxidant activity. J Agric Food Chem. 2001 Aug;49(8):4076-82 http://www.ncbi.nlm.nih.gov/pubmed/11513713
- Bermudez-Soto MJ, Tomas-Barberan FA. Evaluation of commercial red fruit juice concentrates as ingredients for antioxidant functional juices. European Food Research and Technology 2004, 219, (2), 133-141 https://doi.org/10.1007/s00217-004-0940-3
- Määttä-Riihinen KR, Kamal-Eldin A, Törrönen AR. Identification and quantification of phenolic compounds in berries of Fragaria and Rubus species (family Rosaceae). J Agric Food Chem. 2004 Oct 6;52(20):6178-87 http://www.ncbi.nlm.nih.gov/pubmed/15453684
- Tian Q, Giusti MM, Stoner GD, Schwartz SJ. Screening for anthocyanins usinghigh-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry with precursor-ion analysis, product-ion analysis, common-neutral-loss analysis, and selected reaction monitoring. J Chromatogr A. 2005 Oct 14;1091(1-2):72-82 http://www.ncbi.nlm.nih.gov/pubmed/16395794
- Hosseinian FS, Beta T. Saskatoon and wild blueberries have higher anthocyanin contents than other Manitoba berries. J Agric Food Chem. 2007 Dec 26;55(26):10832-8 http://www.ncbi.nlm.nih.gov/pubmed/18052240
- Garzón GA, Riedl KM, Schwartz SJ. Determination of anthocyanins, total phenolic content, and antioxidant activity in Andes Berry (Rubus glaucus Benth). J Food Sci. 2009 Apr;74(3):C227-32 http://www.ncbi.nlm.nih.gov/pubmed/19397707
- Hellström JK, Törrönen AR, Mattila PH. Proanthocyanidins in common foodproducts of plant origin. J Agric Food Chem. 2009 Sep 9;57(17):7899-906 http://www.ncbi.nlm.nih.gov/pubmed/19722709
- Mullen W, Larcombe S, Arnold K, Welchman H, Crozier A. Use of accurate mass full scan mass spectrometry for the analysis of anthocyanins in berries and berry-fed tissues. J Agric Food Chem. 2010 Apr 14;58(7):3910-5 http://www.ncbi.nlm.nih.gov/pubmed/20014766
- Fanali C, Dugo L, D’Orazio G, Lirangi M, Dachà M, Dugo P, Mondello L. Analysis of anthocyanins in commercial fruit juices by using nano-liquid chromatography-electrospray-mass spectrometry and high-performance liquid chromatography with UV-vis detector. J Sep Sci. 2011 Jan;34(2):150-9 http://www.ncbi.nlm.nih.gov/pubmed/21246720
- Henríquez C, López-Alarcón C, Gómez M, Lutz M, Speisky H. Time-dependence of ferric reducing antioxidant power (FRAP) index in Chilean apples and berries. Arch Latinoam Nutr. 2011 Sep;61(3):323-32 http://www.ncbi.nlm.nih.gov/pubmed/22696902
- Komorsky-Lovrić Š, Novak I. Abrasive stripping square-wave voltammetry of blackberry, raspberry, strawberry, pomegranate, and sweet and blue potatoes. J Food Sci. 2011 Aug;76(6):C916-20 http://www.ncbi.nlm.nih.gov/pubmed/22417490
- Chen L, Xin X, Yuan Q, Su D, Liu W. Phytochemical properties and antioxidant capacities of various colored berries. J Sci Food Agric. 2014 Jan 30;94(2):180-8 http://www.ncbi.nlm.nih.gov/pubmed/23653223
- Wu X, Beecher GR, Holden JM, Haytowitz DB, Gebhardt SE, Prior RL.Concentrations of anthocyanins in common foods in the United States and estimation of normal consumption. J Agric Food Chem. 2006 May 31;54(11):4069-75 http://www.ncbi.nlm.nih.gov/pubmed/16719536
- Proteggente AR, Pannala AS, Paganga G, Van Buren L, Wagner E, Wiseman S, Van De Put F, Dacombe C, Rice-Evans CA. The antioxidant activity of regularly consumed fruit and vegetables reflects their phenolic and vitamin C composition. Free Radic Res. 2002 Feb;36(2):217-33. http://www.ncbi.nlm.nih.gov/pubmed/11999391
- Rein MJ, Heinonen M. Stability and enhancement of berry juice color. J Agric Food Chem. 2004 May 19;52(10):3106-14 http://www.ncbi.nlm.nih.gov/pubmed/15137861
- Amakura Y, Okada M, Tsuji S, Tonogai Y. High-performance liquid chromatographic determination with photodiode array detection of ellagic acid in fresh and processed fruits. J Chromatogr A. 2000 Oct 27;896(1-2):87-93 http://www.ncbi.nlm.nih.gov/pubmed/11093643
- Häkkinen SH, Kärenlampi SO, Mykkänen HM, Törrönen AR. Influence of domestic processing and storage on flavonol contents in berries. J Agric Food Chem. 2000 Jul;48(7):2960-5 http://www.ncbi.nlm.nih.gov/pubmed/11032486
- Wang SY, Lin HS. Antioxidant activity in fruits and leaves of blackberry, raspberry, and strawberry varies with cultivar and developmental stage. J Agric Food Chem. 2000 Feb;48(2):140-6 http://www.ncbi.nlm.nih.gov/pubmed/10691606
- McDougall G, Martinussen I, Stewart D. Towards fruitful metabolomics: high throughput analyses of polyphenol composition in berries using direct infusion mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2008 Aug 15;871(2):362-9 http://www.ncbi.nlm.nih.gov/pubmed/18650134
- Bushman BS, Phillips B, Isbell T, Ou B, Crane JM, Knapp SJ. Chemical composition of caneberry (Rubus spp.) seeds and oils and their antioxidant potential. J Agric Food Chem. 2004 Dec 29;52(26):7982-7 http://www.ncbi.nlm.nih.gov/pubmed/15612785
- Parry J, Su L, Luther M, Zhou K, Yurawecz MP, Whittaker P, Yu L. Fatty acid composition and antioxidant properties of cold-pressed marionberry, boysenberry, red raspberry, and blueberry seed oils. J Agric Food Chem. 2005 Feb 9;53(3):566-73 http://www.ncbi.nlm.nih.gov/pubmed/15686403
- Kalt W, Forney CF, Martin A, Prior RL. Antioxidant capacity, vitamin C, phenolics, and anthocyanins after fresh storage of small fruits. J Agric FoodChem. 1999 Nov;47(11):4638-44 http://www.ncbi.nlm.nih.gov/pubmed/10552863
- Häkkinen SH, Kärenlampi SO, Mykkänen HM, Heinonen M, Törrönen AR. Ellagic acid content in berries: Influence of domestic processing and storage. European Food Research and Technology December 2000, Volume 212, Issue 1, pp 75-80 https://doi.org/10.1007/s002170000184
- Moyer RA, Hummer KE, Finn CE, Frei B, Wrolstad RE. Anthocyanins, phenolics, and antioxidant capacity in diverse small fruits: vaccinium, rubus, and ribes. J Agric Food Chem. 2002 Jan 30;50(3):519-25 http://www.ncbi.nlm.nih.gov/pubmed/11804523
- Funt RC. Antioxidants in Ohio berries. Acta Hort. (ISHS) 2003. https://doi.org/10.17660/ActaHortic.2003.626.6
- Scalzo J, Currie A, Stephens J, McGhie T, Alspach P, Horticulture And Food Research Institute Of New Zealand Limited Hortresearch. The anthocyanin composition of different Vaccinium, Ribes and Rubus genotypes. Biofactors.2008;34(1):13-21 http://www.ncbi.nlm.nih.gov/pubmed/19706968
- Sariburun E, Sahin S, Demir C, Türkben C, Uylaşer V. Phenolic content and antioxidant activity of raspberry and blackberry cultivars. J Food Sci. 2010May;75(4):C328-35 http://www.ncbi.nlm.nih.gov/pubmed/20546390
- Šaponjac VT, Gironés-Vilaplana A, Djilas S, Mena P, Cetković G, Moreno DA,Canadanović-Brunet J, Vulić J, Stajčić S, Krunić M. Anthocyanin profiles and biological properties of caneberry (Rubus spp.) press residues. J Sci Food Agric. 2014 Sep;94(12):2393-400 http://www.ncbi.nlm.nih.gov/pubmed/24407975
- Sablani SS, Andrews PK, Davies NM, Walters T, Saez H, Syamaladevi RM, Mohekar PR. Effect of thermal treatments on phytochemicals in conventionally and organically grown berries. J Sci Food Agric. 2010 Apr 15;90(5):769-78 http://www.ncbi.nlm.nih.gov/pubmed/20355111
- Mikulic-Petkovsek M, Schmitzer V, Slatnar A, Stampar F, Veberic R. Composition of sugars, organic acids, and total phenolics in 25 wild or cultivated berry species. J Food Sci. 2012 Oct;77(10):C1064-70 http://www.ncbi.nlm.nih.gov/pubmed/22924969
- Amakura Y, Umino Y, Tsuji S, Tonogai Y. Influence of jam processing on the radical scavenging activity and phenolic content in berries. J Agric Food Chem. 2000 Dec;48(12):6292-7 http://www.ncbi.nlm.nih.gov/pubmed/11312801
- Daniel EM, Krupnick AS, Heur YH, Blinzler JA, Nims RW, Stoner GD. Extraction, stability, and quantitation of ellagic acid in various fruits and nuts. J. Food Compos. Anal. 1989, 2, 338–349. https://doi.org/10.1016/0889-1575(89)90005-7
- Rosales-Soto MU, Powers JR, Alldredge JR. Effect of mixing time, freeze-drying and baking on phenolics, anthocyanins and antioxidant capacity of raspberry juice during processing of muffins. J Sci Food Agric. 2012 May;92(7):1511-8 http://www.ncbi.nlm.nih.gov/pubmed/22228299
- Zafrilla P, Ferreres F, Tomás-Barberán FA. Effect of processing and storage on the antioxidant ellagic acid derivatives and flavonoids of red raspberry (Rubusidaeus) jams. J Agric Food Chem. 2001 Aug;49(8):3651-5 http://www.ncbi.nlm.nih.gov/pubmed/11513642
- Mullen W, Stewart AJ, Lean ME, Gardner P, Duthie GG, Crozier A. Effect of freezing and storage on the phenolics, ellagitannins, flavonoids, and antioxidant capacity of red raspberries. J Agric Food Chem. 2002 Aug 28;50(18):5197-201 http://www.ncbi.nlm.nih.gov/pubmed/12188629
- Suthanthangjai W, Kajda P and Zabetakis I. The effect of high hydrostatic pressure on the anthocyanins of raspberry (Rubus idaeus). Food Chem 90:193–197 (2005). https://doi.org/10.1016/j.foodchem.2004.03.050
- Syamaladevi RM, Sablani SS, Tang J, Powers J, Swanson BG. Stability of anthocyanins in frozen and freeze-dried raspberries during long-term storage: in relation to glass transition. J Food Sci. 2011 Aug;76(6):E414-21 http://www.ncbi.nlm.nih.gov/pubmed/22417493
- Carvalho E, Fraser PD, Martens S. Carotenoids and tocopherols in yellow and red raspberries. Food Chem. 2013 Aug 15;139(1-4):744-52 http://www.ncbi.nlm.nih.gov/pubmed/23561169
- Parry J, Su L, Moore J, Cheng Z, Luther M, Rao JN, Wang JY, Yu LL. Chemical compositions, antioxidant capacities, and antiproliferative activities of selected fruit seed flours. J Agric Food Chem. 2006 May 31;54(11):3773-8 http://www.ncbi.nlm.nih.gov/pubmed/16719495
- Remberg SF, Sønsteby A, Aaby K, Heide OM. Influence of postflowering temperature on fruit size and chemical composition of Glen Ample raspberry (Rubusidaeus L.). J Agric Food Chem. 2010 Aug 25;58(16):9120-8 http://www.ncbi.nlm.nih.gov/pubmed/23654237
- Weber C, Hai R. Antioxidant capacity and anticancer properties of red raspberry. Acta Hort. (ISHS) 2002 585, 451-457. https://doi.org/10.17660/ActaHortic.2002.585.73
- Gülçin I, Topal F, Çakmakçı R, Bilsel M, Gören AC, Erdogan U. Pomological features, nutritional quality, polyphenol content analysis, and antioxidant properties of domesticated and 3 wild ecotype forms of raspberries (Rubus idaeus L.). J Food Sci. 2011 May;76(4):C585-93 http://www.ncbi.nlm.nih.gov/pubmed/22417339
- Bononi M, Andreoli G, Granelli G, Eccher T, Tateo F. ‘Cyanidin volumetricindex’ and ‘chromaticity coordinates ratio’ to characterize red raspberry (Rubusidaeus). Int J Food Sci Nutr. 2006 Aug-Sep;57(5-6):369-75 http://www.ncbi.nlm.nih.gov/pubmed/17135027
- Sparzak B, Merino-Arevalo M, Vander Heyden Y, Krauze-Baranowska M, Majdan M, Fecka I, Głód D, Bączek T. HPLC analysis of polyphenols in the fruits of Rubusidaeus L. (Rosaceae). Nat Prod Res. 2010 Nov;24(19):1811-22 http://www.ncbi.nlm.nih.gov/pubmed/21104526
- Snyder SM, Low RM, Stocks JC, Eggett DL, Parker TL. Juice, pulp and seeds fractionated from dry climate primocane raspberry cultivars (Rubus idaeus) have significantly different antioxidant capacity, anthocyanin content and color. Plant Foods Hum Nutr. 2012 Dec;67(4):358-64 http://www.ncbi.nlm.nih.gov/pubmed/23132011
- Carvalho E, Franceschi P, Feller A, Palmieri L, Wehrens R, Martens S. Atargeted metabolomics approach to understand differences in flavonoid biosynthesis in red and yellow raspberries. Plant Physiol Biochem. 2013 Nov;72:79-86 http://www.ncbi.nlm.nih.gov/pubmed/23622736
- Anttonen MJ, Karjalainen RO. Environmental and genetic variation of phenolic compounds in red raspberry. Food Compos. Anal. 2005, 18, 759–769 https://doi.org/10.1016/j.jfca.2004.11.003
- de Ancos B, Ibañez E, Reglero G, Cano MP. Frozen storage effects on anthocyanins and volatile compounds of raspberry fruit. J Agric Food Chem. 2000 Mar;48(3):873-9 http://www.ncbi.nlm.nih.gov/pubmed/10725166
- Rommel A, Wrolstad RE. Ellagic acid content of red raspberry juice as influenced by cultivar, processing, and environmental-factors. Journal of Agricultural and Food Chemistry 1993, 41, (11), 1951-1960. http://pubs.acs.org/doi/abs/10.1021/jf00035a026
- Novaković MM, Stevanović SM, Gorjanović SŽ, Jovanovic PM, Tešević VV, Janković MA, Sužnjević DŽ. Changes of hydrogen peroxide and radical-scavenging activity of raspberry during osmotic, convective, and freeze-drying. J Food Sci. 2011 May;76(4):C663-8 http://www.ncbi.nlm.nih.gov/pubmed/22417351
- Rommel A, Wrolstad RE. Composition of Flavonols in Red raspberry Juice as Influenced by Cultivar, processing, and Environmental-Factors. Journal of Agricultural and Food Chemistry 1993, 41, (11), 1941-1950. http://pubs.acs.org/doi/abs/10.1021/jf00035a025
- de Ancos B, González EM, Cano MP. Ellagic acid, vitamin C, and total phenolic contents and radical scavenging capacity affected by freezing and frozen storage in raspberry fruit. J Agric Food Chem. 2000 Oct;48(10):4565-70 http://www.ncbi.nlm.nih.gov/pubmed/11052701
- Beekwilder J, Jonker H, Meesters P, Hall RD, van der Meer IM, Ric de Vos CH. Antioxidants in raspberry: on-line analysis links antioxidant activity to a diversity of individual metabolites. J Agric Food Chem. 2005 May 4;53(9):3313-20 http://www.ncbi.nlm.nih.gov/pubmed/15853365
- Tosun M, Ercisli S, Karlidag H, Sengul M. Characterization of red raspberry (Rubus idaeus L.) genotypes for their physicochemical properties. J Food Sci. 2009 Sep;74(7):C575-9 http://www.ncbi.nlm.nih.gov/pubmed/19895463
- Kassim A, Poette J, Paterson A, Zait D, McCallum S, Woodhead M, Smith K, Hackett C, Graham J. Environmental and seasonal influences on red raspberry anthocyanin antioxidant contents and identification of quantitative traits loci (QTL). Mol Nutr Food Res. 2009 May;53(5):625-34 http://www.ncbi.nlm.nih.gov/pubmed/19156716
- McCallum S, Woodhead M, Hackett CA, Kassim A, Paterson A, Graham J. Genetic and environmental effects influencing fruit colour and QTL analysis in raspberry. Theor Appl Genet. 2010 Aug;121(4):611-27 http://www.ncbi.nlm.nih.gov/pubmed/20419285
- Dobson P, Graham J, Stewart D, Brennan R, Hackett CA, McDougall GJ. Over-seasons analysis of quantitative trait loci affecting phenolic content and antioxidant capacity in raspberry. J Agric Food Chem. 2012 May 30;60(21):5360-6 http://www.ncbi.nlm.nih.gov/pubmed/22583495
- Bradish CM, Perkins-Veazie P, Fernandez GE, Xie G, Jia W. Comparison of flavonoid composition of red raspberries ( Rubus idaeus L.) grown in the southern United States. J Agric Food Chem. 2012 Jun 13;60(23):5779-86 http://www.ncbi.nlm.nih.gov/pubmed/22128912
- Woodward G, Kroon P, Cassidy A, Kay C. Anthocyanin stability and recovery:implications for the analysis of clinical and experimental samples. J Agric Food Chem. 2009 Jun 24;57(12):5271-8 http://www.ncbi.nlm.nih.gov/pubmed/19435353
- Gu L, Kelm MA, Hammerstone JF, Beecher G, Holden J, Haytowitz D, Gebhardt S, Prior RL. Concentrations of proanthocyanidins in common foods and estimations of normal consumption. J Nutr. 2004 Mar;134(3):613-7 http://www.ncbi.nlm.nih.gov/pubmed/14988456
- Koponen JM, Happonen AM, Mattila PH, Törrönen AR. Contents of anthocyanins and ellagitannins in selected foods consumed in Finland. J Agric Food Chem. 2007 Feb 21;55(4):1612-9 http://www.ncbi.nlm.nih.gov/pubmed/17261015
Neuroscience
- Fortalezas S, Tavares L, Pimpão R, Tyagi M, Pontes V, Alves PM, McDougall G, Stewart D, Ferreira RB, Santos CN. Antioxidant properties and neuroprotective capacity of strawberry tree fruit (Arbutus unedo). Nutrients. 2010 Feb;2(2):214-29 http://www.ncbi.nlm.nih.gov/pubmed/22254017
- Kim KT, Nam TK, Park YS, Kim YB, Park SW. Neuroprotective effect of anthocyanin on experimental traumatic spinal cord injury. J Korean Neurosurg Soc. 2011 Apr;49(4):205-11 http://www.ncbi.nlm.nih.gov/pubmed/21607177
- Farbood Y, Sarkaki A, Dianat M, Khodadadi A, Haddad MK, Mashhadizadeh S.Ellagic acid prevents cognitive and hippocampal long-term potentiation deficits and brain inflammation in rat with traumatic brain injury. Life Sci. 2015 Mar 1;124:120-7 http://www.ncbi.nlm.nih.gov/pubmed/25637685
- Feng Y, Yang SG, Du XT, Zhang X, Sun XX, Zhao M, Sun GY, Liu RT. Ellagic acid promotes Abeta42 fibrillization and inhibits Abeta42-induced neurotoxicity. Biochem Biophys Res Commun. 2009 Dec 25;390(4):1250-4 http://www.ncbi.nlm.nih.gov/pubmed/19878655
Body Weight
- Suh JH, Romain C, González-Barrio R, Cristol JP, Teissèdre PL, Crozier A,Rouanet JM. Raspberry juice consumption, oxidative stress and reduction of atherosclerosis risk factors in hypercholesterolemic golden Syrian hamsters. Food Funct. 2011 Jul;2(7):400-5 http://www.ncbi.nlm.nih.gov/pubmed/21894327
- Morimoto C, Satoh Y, Hara M, Inoue S, Tsujita T, Okuda H. Anti-obese action of raspberry ketone. Life Sci. 2005 May 27;77(2):194-204 http://www.ncbi.nlm.nih.gov/pubmed/15862604
- Goto T, Teraminami A, Lee JY, Ohyama K, Funakoshi K, Kim YI, Hirai S, Uemura T, Yu R, Takahashi N, Kawada T. Tiliroside, a glycosidic flavonoid, ameliorates obesity-induced metabolic disorders via activation of adiponectin signaling followed by enhancement of fatty acid oxidation in liver and skeletal muscle in obese-diabetic mice. J Nutr Biochem. 2012 Jul;23(7):768-76 http://www.ncbi.nlm.nih.gov/pubmed/21889885
- Park KS. Raspberry ketone increases both lipolysis and fatty acid oxidation in3T3-L1 adipocytes. Planta Med. 2010 Oct;76(15):1654-8 http://www.ncbi.nlm.nih.gov/pubmed/20425690
- Park KS. Raspberry ketone, a naturally occurring phenolic compound, inhibits adipogenic and lipogenic gene expression in 3T3-L1 adipocytes. Pharm Biol. 2015 Jun;53(6):870-5 http://www.ncbi.nlm.nih.gov/pubmed/25429790